Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474605

RESUMO

The design of an experimental approach, the Box-Behnken design, was implemented to optimize the chromatographic condition to develop a rapid HPLC procedure for quantification of a ternary mixture of metoprolol (MET), telmisartan (TEL), and amlodipine (AML) from the formulation. The perturbation plots, contour, and 3D response surface pictures were developed to study the impact of each variable on the analytes' retention time and the probable interaction between the parameters with fewer chromatographic runs. The optimized HPLC method separated the three analytes within 5 min with excellent selectivity and peak shape on a Zorbax C18 HPLC column using acetonitrile and phosphate buffer (20 mM, pH 5.8) with isocratic elution at a 1.1 mL/min flowrate. A wavelength 230 nm was utilized to monitor the elute. The validation of proposed method demonstrated a wide linearity range of 10-200 µg/mL for MET and TEL and 5-50 µg/mL for AML along with an excellent correlation coefficient. The correctness of the HPLC approach was further confirmed by excellent recovery of the added amount of analytes utilizing the standard addition technique. The recommended HPLC approach was employed safely for quality assurance of the formulation, because the evaluation of the method's greenness and whiteness confirmed the environmentally friendly nature of the approach.


Assuntos
Anlodipino , Leucemia Mieloide Aguda , Humanos , Anlodipino/química , Telmisartan , Metoprolol/análise , Cromatografia Líquida de Alta Pressão/métodos
2.
Pharmaceutics ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140094

RESUMO

Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.

3.
Pharmaceutics ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004510

RESUMO

The therapeutic effectiveness of paliperidone in the treatment of schizophrenia has been limited by its poor oral bioavailability; hence, an alternative route could be appropriate. This study investigates the feasibility of developing a buccal film impregnated with paliperidone-loaded nanostructured lipid carriers (NLCs) and assesses the potential to enhance its bioavailability. Box-Behnken-based design optimization of NLCs was performed by examining the particles' physical characteristics. The polymeric film was used to load optimized NLCs, which were then assessed for their pharmaceutical properties, permeability, and pharmacokinetics. The optimization outcomes indicated that selected formulation variables had a considerable (p < 0.05) impact on responses such as particle size, entrapment efficiency, and % drug release. Desired characteristics such as a negative charge, higher entrapment efficiency, and nanoparticles with ideal size distribution were shown by optimized NLC dispersions. The developed film demonstrated excellent physico-mechanical properties, appropriate texture, good drug excipient compatibility (chemically stable formulation), and amorphous drug nature. A sustained Weibull model drug release (p < 0.0005) and superior flux (~5-fold higher, p < 0.005) were seen in NLC-loaded film compared to plain-drug-loaded film. The pharmacokinetics profile in rabbits supports the goal of buccal therapy as evidenced by significantly higher AUC0-12 (p < 0.0001) and greater relative bioavailability (236%) than the control. These results support the conclusion that paliperidone-loaded NLC buccal film has the potential to be an alternate therapy for its effective administration in the treatment of schizophrenia.

4.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759692

RESUMO

Streptococcus mutans bacteria form a biofilm called plaque that causes oral diseases, including tooth decay. Therefore, inhibition of biofilm formation is essential to maintaining good oral health. The health and nutritional benefits of Cynodon dactylon are well documented, but very little is known about its use to treat against oral diseases. The aim of this study was to detect the adhesion strength of the S. mutans bacterial biofilm in 100 cases in the Rajshahi region and evaluate the inhibitory activity of different compound extracts of C. dactylon on the S. mutans bacterial biofilm by determining the composition of isolated compounds using phytochemical analysis. Nuclear magnetic resonance (NMR) spectroscopy confirmed that three specific compounds from C. dactylon were discovered in this study: 3,7,11,15 tetramethyl hexadec-2-4dien 1-o1, compound 3,7,11,15 tetramethylhexadec-2-en-1-o1 from phytol derivatives, and stigmasterol. Results indicated that the compound of 3,7,11,15-tetramethyl-hexadec-2-en-1-ol exhibited higher antibiofilm activities on S. mutans than those of the other compound extracts. A lower level of minimum inhibitory concentration was exposed by 3, 7, 11,15 tetramethyl hexadeca-2-en-1-o1 (T2) on S. mutans at 12.5 mL. In this case, the compound of 3,7,11,15 tetramethyl hexadec 2en-1-o1 was used, and patients showed a mean value and standard error reduced from 3.42 ± 0.21 to 0.33 ± 0.06 nm. The maximum inhibition was (80.10%) in the case of patient no. 17, with a value of p < 0.05 found for S. mutans to which 12.5 µL/mL ethyl acetate extract was applied. From these findings, it may be concluded that C. dactylon extracts can be incorporated into various oral preparations to prevent tooth decay.


Assuntos
Cynodon , Streptococcus mutans , Humanos , Bangladesh , Biofilmes , Agregação Celular
5.
Gels ; 9(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504455

RESUMO

Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and -0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics.

6.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242448

RESUMO

The clinical usefulness of doxorubicin (DOX) is limited by its serious adverse effects, such as cardiotoxicity. Pregnenolone demonstrated both anti-inflammatory and antioxidant activity in animal models. The current study aimed to investigate the cardioprotective potential of pregnenolone against DOX-induced cardiotoxicity. After acclimatization, male Wistar rats were randomly grouped into four groups: control (vehicle-treated), pregnenolone (35 mg/kg/d, p.o.), DOX (15 mg/kg, i.p, once), and pregnenolone + DOX. All treatments continued for seven consecutive days except DOX, which was administered once on day 5. The heart and serum samples were harvested one day after the last treatment for further assays. Pregnenolone ameliorated the DOX-induced increase in markers of cardiotoxicity, namely, histopathological changes and elevated serum levels of creatine kinase-MB and lactate dehydrogenase. Moreover, pregnenolone prevented DOX-induced oxidative changes (significantly lowered cardiac malondialdehyde, total nitrite/nitrate, and NADPH oxidase 1, and elevated reduced glutathione), tissue remodeling (significantly decreased matrix metalloproteinase 2), inflammation (significantly decreased tumor necrosis factor-α and interleukin 6), and proapoptotic changes (significantly lowered cleaved caspase-3). In conclusion, these findings show the cardioprotective effects of pregnenolone in DOX-treated rats. The cardioprotection achieved by pregnenolone treatment can be attributed to its antioxidant, anti-inflammatory, and antiapoptotic actions.

7.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242664

RESUMO

The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.

8.
Pharmaceutics ; 15(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111710

RESUMO

Clinical application of treprostinil in pulmonary arterial hypertension is hampered by adverse effects caused by its high dosing frequency. The objective of this investigation was to Formulate an adhesive-type transdermal patch of treprostinil and evaluate it both in vitro and in vivo. A 32-factorial design was utilized to optimize the selected independent variables (X1: drug amount, X2: enhancer concentration) on the response variables (Y1: drug release, Y2: transdermal flux). The optimized patch was evaluated for various pharmaceutical properties, skin irritation, and pharmacokinetics in rats. Optimization results signify considerable influence (p < 0.0001) of X1 on both Y1 and Y2, as compared to X2. The optimized patch possesses higher drug content (>95%), suitable surface morphology, and an absence of drug crystallization. FTIR analysis revealed compatibility of the drug with excipients, whereas DSC thermograms indicate that the drug exists as amorphous in the patch. The adhesive properties of the prepared patch confirm adequate adhesion and painless removal, while the skin irritation study confirms its safety. A steady drug release via Fickian diffusion and greater transdermal delivery (~23.26 µg/cm2/h) substantiate the potential of the optimized patch. Transdermal therapy resulted in higher treprostinil absorption (p < 0.0001) and relative bioavailability (237%) when compared to oral administration. Overall, the results indicate that the developed drug in the adhesive patch can effectively deliver treprostinil through the skin and could be a promising treatment option for pulmonary arterial hypertension.

9.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903944

RESUMO

Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18ß-glycyrrhetinic acid (18ßGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18ßGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18ßGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18ßGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18ßGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18ßGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.

10.
Plants (Basel) ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904028

RESUMO

Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.

11.
Gels ; 9(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36975662

RESUMO

Poor aqueous solubility besides extensive hepatic first effect significantly decreases the oral absorption of levosulpiride, which in turn minimizes its therapeutic effectiveness. Niosomes have been extensively investigated as a transdermal vesicular nanocarrier to increase the delivery of low permeable compounds into and across the skin. This research work was to design, develop and optimize levosulpiride-loaded niosomal gel and to evaluate its prospects for transdermal delivery. The Box-Behnken design was used to optimize niosomes by analyzing the impact of three factors (cholesterol; X1, Span 40; X2, and sonication time; X3) on the responses (particle size, Y1, and entrapment efficiency, Y2). Optimized formulation (NC) was incorporated into gel and evaluated for pharmaceutical properties, drug release study, ex vivo permeation, and in vivo absorption. The design experiment data suggest that all three independent variables influence both response variables significantly (p < 0.01). Pharmaceutical characteristics of NC vesicles showed the absence of drug excipient interaction, nanosize (~102.2 nm), narrow distribution (~0.218), adequate zeta potential (-49.9 mV), and spherical shape, which are suitable for transdermal therapy. The levosulpiride release rates varied significantly (p < 0.01) between niosomal gel formulation and control. Greater flux (p < 0.01) was observed with levosulpiride-loaded niosomal gel than with control gel formulation. Indeed, the drug plasma profile of niosomal gel was significantly higher (p < 0.005), with ~3 folds higher Cmax and greater bioavailability (~500% higher; p < 0.0001) than its counterpart. Overall, these findings imply that the use of an optimized niosomal gel formulation can increase the therapeutic efficacy of levosulpiride and may represent a promising alternative to conventional therapy.

12.
Gels ; 9(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826300

RESUMO

Dolutegravir's therapeutic effectiveness in the management of neuroAIDS is mainly limited by its failure to cross the blood-brain barrier. However, lipid-based nanovesicles such as nanoemulsions have demonstrated their potential for the brain targeting of various drugs by intranasal delivery. Thus, the purpose of this study was to develop a Dolutegravir-loaded nanoemulsion-based in situ gel and evaluate its prospective for brain targeting by intranasal delivery. Dolutegravir-loaded nanoemulsions were prepared using dill oil, Tween® 80, and Transcutol® P. Optimization of the nanoemulsion particle size and drug release was carried out using a simplex lattice design. Formulations (F1-F7 and B1-B6) were assessed for various pharmaceutical characteristics. Ex vivo permeation and ciliotoxicity studies of selected in situ gels (B1) were conducted using sheep nasal mucosa. Drug targeting to the brain was assessed in vivo in rats following the nasal delivery of B1. The composition of oil, surfactant, and cosurfactant significantly (p < 0.05) influenced the dependent variables (particle size and % of drug release in 8 h). Formulation B1 exhibits pharmaceutical characteristics that are ideal for intranasal delivery. The mucosal steady-state flux noticed with BI was significantly greater (p < 0.005) than for the control gel. A histopathology of nasal mucosa treated with BI showed no signs of toxicity or cellular damage. Intranasal administration of B1 resulted in greater Cmax (~six-fold, p < 0.0001) and AUC0-α (~five-fold, p < 0.0001), and decreased Tmax (1 h) values in the brain, compared to intravenous administration. Meantime, the drug level in the plasma was relatively low, suggesting less systemic exposure to Dolutegravir through intranasal delivery. In summary, the promising data observed here signifies the prospective of B1 to enhance the brain targeting of Dolutegravir by intranasal delivery and it could be used as a feasible and practicable strategy for the management of neuroAIDS.

13.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500230

RESUMO

A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.


Assuntos
Inibidores de Ciclo-Oxigenase , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química
14.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500833

RESUMO

Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into ß-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (ß-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 µg/mL) in comparison to SES (106 µg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.

15.
Pharmaceutics ; 14(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432670

RESUMO

Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.

16.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296501

RESUMO

The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.


Assuntos
Gastroenteropatias , Naproxeno , Humanos , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides/química , Antioxidantes , Araquidonato 15-Lipoxigenase , Ciclo-Oxigenase 2 , Gastroenteropatias/tratamento farmacológico , Guaiacol , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Oxigênio
17.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139761

RESUMO

Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.

18.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015129

RESUMO

Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)'s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.

19.
Pharmaceutics ; 14(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015262

RESUMO

Polymeric micelles (PMs) have made significant progress in drug delivery applications. A robust core-shell structure, kinetic stability and the inherent ability to solubilize hydrophobic drugs are the highlights of PMs. This review presents the recent advances and understandings of PMs with a focus on the latest drug delivery applications. The types, methods of preparation and characterization of PMs are described along with their applications in oral, parenteral, transdermal, intranasal and other drug delivery systems. The applications of PMs for tumor-targeted delivery have been provided special attention. The safety, quality and stability of PMs in relation to drug delivery are also provided. In addition, advanced polymeric systems and special PMs are also reviewed. The in vitro and in vivo stability assessment of PMs and recent understandings in this area are provided. The patented PMs and clinical trials on PMs for drug delivery applications are considered indicators of their tremendous future applications. Overall, PMs can help overcome many unresolved issues in drug delivery.

20.
Gels ; 8(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35877535

RESUMO

The second most common cause of mortality among women is breast cancer. A variety of natural compounds have been demonstrated to be beneficial in the management of various malignancies. Resveratrol is a promising anticancer polyphenolic compound found in grapes, berries, etc. Nevertheless, its low solubility, and hence its low bioavailability, restrict its therapeutic potential. Therefore, in our study, we developed a thermosensitive hydrogel formulation loaded with resveratrol nanoemulsion to enhance its bioavailability. Initially, resveratrol nanoemulsions were formulated and optimized utilizing a central composite-face-centered design. The independent variables for optimization were surfactant level, homogenization speed, and time, while the size and zeta potential were the dependent variables. The optimized nanoemulsion formulation was converted into a sensitive hydrogel using poloxamer 407. Rheological studies proved the formation of gel consistency at physiological temperature. Drug loading efficiency and in vitro drug release from gels were also analyzed. The drug release mechanisms from the gels were assessed using various mathematical models. The effect of the optimized thermosensitive resveratrol nanoemulsion hydrogel on the viability of human breast cancer cells was tested using MCF-7 cancer cell lines. The globule size of the selected formulation was 111.54 ± 4.16 nm, with a zeta potential of 40.96 ± 3.1 mV. Within 6 h, the in vitro release profile demonstrated a release rate of 80%. According to cell line studies, the produced hydrogel of resveratrol nanoemulsion was cytotoxic to breast cancer cells. Overall, the results proved the developed nanoemulsion-loaded thermosensitive hydrogel is a promising platform for the effective delivery of resveratrol for the management of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...